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Abstract

Quantum deformations of the structure constants for a class of associative
noncommutative algebras are studied. It is shown that these deformations are
governed by the quantum central systems which have a geometrical meaning of
a vanishing Riemann curvature tensor for Christoffel symbols identified with
the structure constants. A subclass of isoassociative quantum deformations
is described by the oriented associativity equation and, in particular, by the
Witten–Dijkgraaf–Verlinde–Verlinde equation. It is demonstrated that a wider
class of weakly (non)associative quantum deformations is connected with the
integrable soliton equations too. In particular, such deformations for the three-
dimensional and infinite-dimensional algebras are described by the Boussinesq
equation and KP hierarchy, respectively.

PACS number: 02.30.Ik
Mathematics Subject Classification: 16xx, 35Q53, 37K10, 53Axx

1. Introduction

Modern theory of deformations for associative algebras which was formulated in the classical
works by Gerstenhaber [1, 2] got a fresh impetus with the discovery of the Witten–Dijkgraaf–
Verlinde–Verlinde (WDVV) equation [3, 4]. Beautiful formalization of the theory of the
WDVV equation in terms of the Frobenius manifolds given by Dubrovin [5, 6] and its
subsequent extension to F-manifolds [7, 8] have provided us with the remarkable realization
(see e.g. [5–11]) of one of Gerstenhaber’s approaches to the deformation of associative algebras
which consists in the treatment of ‘the set of structure constants as parameter space for the
deformation theory’ ([1], Chapter II, section 1). A characteristic feature of the theory of
Frobenius and F-manifolds is that the action of the algebra is defined on the tangent sheaf of
these manifolds [5–11].

A different method to describe deformations of the structure constants for associative
commutative algebra in a given basis has been proposed recently in [12–14]. This approach
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consists (1) in converting the table of multiplication for an associative algebra in the basis
P0, P1, . . . , PN−1, i.e.

Pj Pk = Cl
jk(x)Pl , j, k = 0, 1, . . . , N − 1 (1.1)

into the zero set � of the functions

fjk = −pjpk + Cl
jk(x)pl, j, k = 0, 1, . . . , N − 1 (1.2)

with p0, p1, . . . , pN−1 and deformation parameters x0, x1, . . . , xN−1 being the Darboux
canonical coordinates in the symplectic space R2N and (2) in the requirement that the ideal J
generated by the functions fjk is the Poisson ideal, i.e.

{J, J } ⊂ J (1.3)

with respect to the standard Poisson bracket {, } in R2N . Here and below the summation over
the repeated index is assumed and this index always runs from 0 to N − 1.

Deformations of the structure constants Cl
jk defined by these conditions are governed by

the central system (CS) of equations consisting of the associativity condition

Cl
jk(x)Cn

lm(x) − Cl
mk(x)Cn

lj (x) = 0 (1.4)

and the coisotropy condition

[C,C]mjklr � Cm
sj

∂Cs
lr

∂xk
+ Cm

sk

∂Cs
lr

∂xj
− Cm

sr

∂Cs
jk

∂xl
− Cm

sl

∂Cs
jk

∂xr
+ Cs

lr

∂Cm
jk

∂xs
− Cs

jk

∂Cm
lr

∂xs
= 0. (1.5)

Such deformations of the structure constants have been called the coisotropic deformations
in [12–14]. CS (1.4), (1.5) is invariant under the general transformations xj → x̃j of the
deformation parameters with Cl

jk being the (1,2) type tensor [14]. It has a number of other
interesting properties. For the finite-dimensional algebras this CS contains as the particular
cases the oriented associativity equation, the WDVV equation and certain hydrodynamical-
type equations such as the stationary dispersionless Kadomtsev–Petviashvili (KP) equation (or
Khokhlov–Zabolotskaya equation) [14]. For the infinite-dimensional polynomial algebras in
the Faa’ di Bruno basis the coisotropic deformations are described by the universal Whitham
hierarchy of zero genus, in particular, by the dispersionless KP hierarchy [12].

It was demonstrated in [14] that the theory of coisotropic deformations and the theory of
F-manifolds are essentially equivalent as far as the characterization (1.4), (1.5) of the structure
constants is concerned. One of the advantages of the former is that it is formulated basically
in a simple framework of classical mechanics with the standard ingredients such as the phase
space with the canonical coordinates pj , x

j and the constraints fjk = 0 which are nothing but
the Dirac’s first class constraints. This feature of the approach proposed in [12–14] strongly
suggests a way to build a natural and simple quantum version of coisotropic deformations in
parallel with the passage from the classical to quantum mechanics.

In this paper, we present the basic elements of the theory of quantum deformations for
a class of associative noncommutative algebras. A main idea of the approach is to associate
the elements of the Heisenberg algebra with the elements Pj of the basis for the algebra
and deformation parameters xj . Realizing the table of multiplication, following the Dirac’s
prescription, as the set of equations selecting ‘physical’ subspace in the infinite-dimensional
linear space and requiring that this subspace is not empty, one gets a system of equations, the
quantum central system (QCS),

h̄
∂Cn

jk

∂xl
− h̄

∂Cn
kl

∂xj
+ Cm

jkC
n
lm − Cm

klC
n
jm = 0 (1.6)

which governs quantum deformations of the structure constants. Here h̄ is the Plank’s constant.
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It is shown that a subclass of isoassociative quantum deformations, for which the classical
condition (1.4) is valid for all values of quantum deformation parameters, is described
by the oriented associativity equation and, as the reduction, by the WDVV equation. A
wider class of weakly (non)associative quantum deformations is considered too. It is
characterized by nonvanishing quantum anomaly (defect of associativity). These deformations
are also associated with integrable systems. It is shown that for the three-dimensional
algebra a class of such deformations is described by the Boussinesq equation. For infinite-
dimensional polynomial algebras in the Faa’ di Bruno basis the weakly (non)associative
quantum deformations of the structure constants are given by the KP hierarchy or, more
generally, by the multi-component KP hierarchy.

The paper is organized as follows. The definition of quantum deformations and the
derivation of the QCS (1.6) are given in section 2. Isoassociative quantum deformations
and the corresponding oriented associativity equation are discussed in section 3. In section 4
the weakly (non)associative deformations and an example of such deformation described by
the Boussinesq equation are considered. Quantum deformations of the infinite-dimensional
algebra and associated KP hierarchy are studied in section 5.2.

2. Quantum deformations of associative algebras

In the construction of quantum version of the coistropic deformations we will follow basically
the same lines as in the standard passage from classical mechanics to quantum mechanics:
substitute a phase space by the infinite-dimensional linear (Hilbert) space, introduce operators
instead of the canonically conjugated momenta and coordinates etc.

So, let A be an N-dimensional associative algebra with (or without) unity element
P0. We will consider a class of algebras which posses a basis composed by pairwise
commuting elements. Denoting elements of a basis as P0, P1, . . . , PN−1 one writes the
table of multiplication

Pj Pk = Cl
jk(x)Pl , j, k = 0, 1, . . . , N − 1, (2.1)

where x0, x1, . . . , xN−1 stand for the deformation parameters of the structure constants. The
commutativity of the elements of the basis implies that Cl

jk = Cl
kj .

In order to define quantum deformations we first associate a set of linear operators p̂j and
x̂j (j = 0, 1, . . . , N − 1) with the elements Pj of the basis and the deformation parameters
xj and require that these operators are elements of the Heisenberg algebra

[p̂j , p̂k] = 0, [̂xj , x̂k] = 0, [p̂j , x̂
k] = h̄δk

j , j, k = 0, 1 . . . , N − 1, (2.2)

where h̄ is Planck’s constant and δk
j is the Kronecker symbol. The second step is to give a

realization of the table of multiplication (2.1) in terms of these operators. For this purpose we
introduce the set of operators f̂jk defined by

f̂jk = −p̂j p̂k + Cl
jk(̂x)p̂l, j, k = 0, 1, . . . , N − 1. (2.3)

To simplify notations we will omit in what follows the label̂ in the symbols of operators.
It is easy to see that the representation of the table of multiplication (2.1) by the operator

equations fjk = 0 is too restrictive. Indeed, it implies the relation [fjk, pn] = 0 which due to
the identity [

pn, C
l
jk

] = h̄
∂Cl

jk

∂xn
(2.4)

gives
∂Cl

jk

∂xn = 0. A right way to quantize the first-class constraints from the classical mechanics
has been suggested long time ago by Dirac [15]. It consists in the treatment of the first-class
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constraints as the conditions selecting a subspace H� of physical states in the Hilbert space H
by the equations

fjk |�〉 = 0, j, k = 0, 1, . . . , N − 1, (2.5)

where vectors |�〉 ⊂ H .
The prescription (2.5) is the key point of the following

Definition. The structure constants Cl
jk(x) are said to define quantum deformations of an

associative algebra if the operators fjk defined by (2.3) have a nontrivial common kernel.

If conditions (2.5) are satisfied then any vector |�〉 belonging to H� is invariant under the
group of transformations generated by operators G = exp(αjkfjk) where αjk are parameters,
i.e. G |�〉 = |�〉 . In such a form the above definition is the quantum version of the classical
condition (1.3).

The requirement (2.5) for the existence of the common eigenvectors with zero eigenvalues
for all operators fjk imposes severe constraints on the functions Cl

jk(x). We begin with the
well-known consequence of (2.5) that is

[fjk, fln]|�〉 = 0, j, k, l, n = 0, 1, . . . , N − 1. (2.6)

This condition is the quantum version of the coisotropy condition {fjk, fln}|� = 0 in the
classical case. Using (2.2) and (2.4), one obtains from (2.6) the relation(

h̄2
∂2Cm

jk

∂xl∂xn
− h̄2 ∂2Cm

ln

∂xj ∂xk
− h̄ [C,C]mjk ln

)
pm |�〉 = 0, (2.7)

where the bracket [C,C]mjk ln is defined in (1.5).
So, equations (2.6) are satisfied if

h̄
∂2Cm

jk

∂xl∂xn
− h̄

∂2Cm
ln

∂xj ∂xk
− [C,C]mjk ln = 0, j, k, l, n,m = 0, 1, . . . , N − 1. (2.8)

This constraint is the quantum version of the cosisotropy condition (1.5).
To derive the quantum version of the associativity condition (1.4) we use the identity

(pjpk)pl − pj (pkpl) = pjfkl − plfjk + Cm
klfjm − Cm

jkflm

+

(
h̄

∂Cn
jk

∂xl
− h̄

∂Cn
kl

∂xj
+ Cm

jkC
n
lm − Cm

klC
n
jm

)
pn. (2.9)

It implies that

((pjpk)pl − pj (pkpl))|�〉 =
(
h̄

∂Cn
jk

∂xl
− h̄

∂Cn
kl

∂xj
+ Cm

jkC
n
lm − Cm

klC
n
jm

)
pn|�〉 (2.10)

for |�〉 ⊂ H�. Hence, if the structure constants obey the equations

h̄
∂Cn

jk

∂xl
− h̄

∂Cn
kl

∂xj
+ Cm

jkC
n
lm − Cm

klC
n
jm = 0, j, k, l, n = 0, 1, . . . , N − 1 (2.11)

then

((pjpk)pl − pj (pkpl))|�〉 = 0. (2.12)

Equations (2.11) and (2.8) represent the quantum counterpart of the classical CS (1.4),
(1.5). These system of equations have in fact a much simpler form since only part of them is
independent. Indeed, one has the following identity

h̄T m
jk,ln = h̄

∂Rm
jlk

∂xn
− h̄

∂Rm
nlk

∂xj
− Cm

jsR
s
lkn − Cm

nsR
s
kjl − Cs

lnR
m
ksj − Cs

jkR
m
ln s − Cs

lkR
m
sjn,
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where T m
jk,ln denotes the lhs of equation (2.8) and Rn

klj stands for the lhs of equation (2.11).
Thus, we have the following proposition.

Proposition 2.1. The structure constants Cl
jk(x) define a quantum deformation of an

associative algebra if they obey the equations

Rn
klj � h̄

∂Cn
jk

∂xl
− h̄

∂Cn
kl

∂xj
+ Cm

jkC
n
lm − Cm

klC
n
jm = 0.� (2.13)

We will refer to system (2.13) as the quantum central system (QCS). We emphasize that
quantum deformations are defined in the category of associative noncommutative algebras
which possess commutative basis.

Proposition 2.2. If the structure constants define a quantum deformation then

[fjk, flm] = −h̄Kst
jk,lmfst , j, k, l,m = 0, 1, . . . , N − 1, (2.14)

where

Kst
jk,lm = 1

2

(
δt
m

∂Cs
jk

∂xl
+ δt

l

∂Cs
jk

∂xm
− δt

k

∂Cs
lm

∂xj
− δt

j

∂Cs
lm

∂xk

+ δs
m

∂Ct
jk

∂xl
+ δs

l

∂Ct
jk

∂xm
− δs

k

∂Ct
lm

∂xj
− δs

j

∂Ct
lm

∂xk

)
. (2.15)

The proof is by direct calculation.
We note that expression (2.15) exactly coincides with that which appear in the coisotropic

case for the Poisson brackets between the functions fjk . So, one has the same closed algebra
for the basic objects fjk and f̂jk for the coisotropic and quantum deformations up to the
standard correspondence [, ] ←→ −h̄ {, } [15] between commutators and Poisson brackets.

The central systems (1.4), (1.5) and (2.13) which define coisotropic and quantum
deformations have rather different forms. In spite of this they have some general properties
in common. The invariance under the general transformations of deformation parameters is
one of them. Similar to the coisotropic case [12–14] the quantum deformation parameters
xj and corresponding pk are strongly interrelated: they should obey the conditions (2.2). So
any change xj → x̃j requires an adequate change pk → p̃k in order the relations (2.2) to
be preserved. Thus, for the general transformation of the deformation parameters xj in our
scheme one has

xj → x̃j , pk → p̃k = ∂x̃n

∂xk
pn, j, k = 0, 1, . . . , N − 1. (2.16)

Note that the transformations (2.16) preserve the commutativity of the basis.
The requirement of the invariance for equations (2.5) readily implies that

Cl
jk(x) → C̃l

jk (̃x) = ∂x̃l

∂xt

∂xs

∂x̃j

∂xm

∂x̃k
Ct

sm(x) + h̄
∂x̃l

∂xm

∂2xm

∂x̃j ∂x̃k
(2.17)

under transformations (2.16). Then, it is a straightforward check that equation (2.13) is also
invariant. Hence, one has

Proposition 2.3. The QCS (2.13) is invariant under the general transformations of the
deformation parameters.

Furthermore, the relation (2.17) evidently coincides with the transformation law of the
Christoffel symbols and in formula (2.13) the tensor Rn

klj is nothing but the Riemann curvature
tensor expressed in terms of the Christoffel symbols (see e.g. [16, 17]).

5



J. Phys. A: Math. Theor. 42 (2009) 095201 B G Konopelchenko

Thus, we have the following geometrical interpretation.

Geometrical interpretation. The QCS system (2.13) which governs the quantum deformations
in geometrical terms means the vanishing of the Riemann curvature tensor Rn

klj for the
torsionless Christoffel symbols �l

jk identified with the structure constants
(
Cl

jk = h̄�l
jk

)
.

In the standard terms of the matrix-valued one-form � with the matrix elements (see
e.g. [17])

�l
k = (Cj )

l
k dxj = Cl

jk dxj (2.18)

equation (2.13) looks like

h̄d� + � ∧ � = 0, (2.19)

where d and ∧ denote the exterior differential and exterior product, respectively. The flatness
condition

[∇j ,∇l] = 0 (2.20)

for the torsionless connection ∇j = h̄ ∂
∂xj + Cj is the another standard form of

equation (2.13). In the context of Frobenius manifolds the relation between the structure
constants and Christoffel symbols has been discussed with a different approach in [6].

The identification of the structure constants with the Christoffel symbols leads to certain
constraints within such geometrical interpretation. For instance, for an algebra with the unity
element P0, for which Cl

0k = δl
k , equation (2.13) immediately implies

∂Cn
jk

∂x0
= 0, j, k, n = 0, 1, . . . , N − 1. (2.21)

Furthermore, if one requires that P0 is invariant with respect to the transformations (2.16)
then ∂x̃j

∂x0 = δ
j

0 and ∂xj

∂x̃0 = δ
j

0 , j = 0, 1, . . . , N − 1.

For algebras with different properties (semisimple, nilpotent etc) the orbits generated by
transformations (2.16) have quite different parametrizations. For instance, for a semisimple
algebra there is a basis at which Cl

jk = δjkδ
l
j (see e.g. [5, 6]). Let us denote the deformation

parameters associated with this basis as u0, u1, . . . , uN−1. Then the corresponding orbit has
the following parametrization

Cl
jk(x) = ∂xl

∂um

∂um

∂xj

∂um

∂xk
+ h̄

∂xl

∂um

∂2um

∂xj∂xk
, (2.22)

where xm(u),m = 0, 1, . . . , N − 1 are arbitrary functions. For a nilpotent algebra for which
all elements have degree of nilpotency equal to 2 there exists a basis at which all Cl

jk = 0.

The general element of the corresponding orbit is given by the formula

Cl
jk(x) = h̄

∂xl

∂um

∂2um

∂xj∂xk
, (2.23)

where again xm(u) are arbitrary functions.
In the construction presented above we did not use concrete realization of operators pj and

xk . Any such realization provides us with a concrete realization of the associative algebra under
consideration and the formulae derived . The most common representation of the Heisenberg
algebra (2.2) is given by the so-called Schrödinger representation at which operators x̂j are the
operators of multiplication by xj , pj are operators h̄ ∂

∂xj and wavefunctions �(x) are elements
of the space H. In this realization the associative algebra A is the well-known algebra of
differential polynomials and equations (2.5) have the form

− h̄
∂2�

∂xj∂xk
+ Cl

jk(x)
∂�

∂xl
= 0, j, k = 0, 1, . . . , N − 1. (2.24)
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It is a simple check that the usual compatibility condition for system (2.24) (equality
of the mixed third-order derivatives) is nothing but conditions (2.12) and it is equivalent to
equations (2.11). For an algebra with the unity element one has h̄ ∂�

∂x0 = � and, in virtue of
(2.21) one has

�(x) = e
x0

h̄ �̃(x1, . . . , xN−1). (2.25)

The system (2.24) is well-known in geometry. In the theory of the Frobenius manifolds
it is called the Gauss–Manin equation (see e.g. [6, 9]). Such a system arises also in the theory
of Gromov–Witten invariants [18, 19].

The standard quasiclassical approximation � = exp
(

S(x)

h̄

)
, h̄ → 0 (see e.g. [15])

performed for equations (2.24) give rise to the Hamilton–Jacobi equations

− ∂S

∂xj

∂S

∂xk
+ Cl

jk

∂S

∂xl
= 0. (2.26)

These equations coincide with those for the generating function S for Lagrangian
submanifolds which arise in the theory of coisotropic deformations [14]. In this classical
limit h̄ → 0, the system (2.8), (2.11) is reduced to the classical CS (1.4), (1.5) and the whole
construction presented above is reduced to that of coisotropic deformations.

Other realizations of the Heisenberg algebra (2.2) are of interest too. Here we will mention
only one of them given in terms of the standard creation and annihilation operators a+j and aj

and the Fock space. The standard basis in the Fock space is given by the vectors

|n0, n1, . . . , nN−1〉 = (n0!n1! . . . nN−1!)−
1
2 �N−1

k=0 (a+k)nk |0〉, nk = 0, 1, 2 . . .

where aj |0〉 = 0, j = 0, 1, . . . , N − 1 and 〈0|0〉 = 1.
Then

|�〉 =
∞∑

nk=0

An0,n1,...,nN−1 |n0, n1, . . . , nN−1〉

and the constraint (2.5) takes the form(−ajak + Cl
jk(a

+)al

) |�〉 = 0, j, k = 0, 1, . . . , N − 1. (2.27)

This system of equations is equivalent to the infinite system of discrete equations for
the coefficients An0,...,nN−1 while Cl

jk(a
+) obey QCS (2.13). Equations (2.27) define sort

of coherent states which could be relevant to the theory of quantum deformations and its
quasiclassical limit.

Finally, we note that several different ‘quantization’ schemes for the structures associated
with the Frobenius manifolds, F-manifolds and coisotropic submanifolds have been proposed
in [18–22]. A comparative analysis of these approaches and our scheme will be done elsewhere.

3. Isoassociative quantum deformations and oriented associativity equation

General quantum deformations described in the previous section contain as a subclass of
deformations for which the classical associativity condition (1.4) is satisfied for all values
of quantum deformation parameters. We will refer to such deformations as isoassociative
quantum deformations by analogy with the isomonodromy and isospectral deformations.
Formula (2.13) implies

Proposition 3.1. Structure constants Cl
jk(x) define isoassociative quantum deformations of

associative algebra if they obey the equations

7
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Cm
jkC

n
lm − Cm

klC
n
jm = 0, (3.1)

∂Cn
jk

∂xl
− ∂Cn

kl

∂xj
= 0. (3.2)

In terms of the one-form � (2.18) the system (3.1), (3.2) looks like

� ∧ � = 0, d� = 0. (3.3)

Another way to arrive at system (3.1), (3.2) consists in the treatment of h̄ in all the above
formulae beginning with (2.2) not as the fixed constant but as a variable parameter. In such
interpretation the QCS (2.13) from the very beginning splits into two equations (3.1) and (3.2),
the connection ∇j from (2.20) becomes a pencil of flat torsionless connection discussed in
[5, 6, 8, 9] and equations (2.24) coincide with the Dubrovin’s linear system for flat coordinates
[5, 6]. Thus, quantum deformations for which pj and xj are elements of the pencil of
Heisenberg algebras (2.2) are of particular interest.

A way to deal with system (3.1), (3.2) is to solve first equations (3.2). They imply that

Cl
jk = ∂2�l

∂xj ∂xk
, (3.4)

where �l, l = 0, 1, . . . , N − 1 are functions. Equation (3.1) then become

∂2�m

∂xj∂xk

∂2�n

∂xm∂xl
= ∂2�m

∂xl∂xk

∂2�n

∂xm∂xj
. (3.5)

System (3.5) has appeared first in [5] (Proposition 2.3) as the equation for the displacement
vector. It has been rederived in a different context in [23] and has been called the oriented
associativity equation there. In the form (3.3) it has appeared also in [24, 25]. In our approach
it describes the isoassociative quantum deformation of the structure constants for a class of
associative noncommutative algebras. For this class of deformations all operators fjk have a
simple generating ‘function’, namely

h̄2fjk = [pj,[pk,W ]],

where

W = − 1
2 (xmpm)2 + �mpm.

In the theory of coisotropic deformations [14] the deformations given by equations (3.4),
(3.5) constitute a subclass of all deformations. So, oriented associativity equation describes
simultaneously both coisotropic and isoassociative quantum deformations. In other words,
one of the characteristic features of the class of deformations given by formulae (3.1), (3.2) is
that they remain unchanged in the process of ‘quantization’. This means also that one can use
both classical formulae [14] and the quantum one (previous section) to describe the properties
of these deformations. For instance, it was shown in [14] that in the natural parametrization
of the structure constants Cl

jk by the eigenvalues of the matrices Cj and in terms of canonical
coordinates uj the system (3.2) becomes the system of conditions for the commutativity of
N hydrodynamical-type systems. At the same time, the functions �n have a meaning of
conserved densities for these hydrodynamical-type systems. All these results are valid for the
isoassociative quantum deformations too.

The oriented associativity equation (3.5) admits a well-known reduction to a single
superpotential F given by

�n = ηnl ∂F

∂xl
,

8



J. Phys. A: Math. Theor. 42 (2009) 095201 B G Konopelchenko

where ηnl is a constant metric. In this case equations (3.5) become the famous WDVV equation
[3, 4]

∂3F

∂xj∂xk∂xs
ηst ∂3F

∂xt∂xm∂xl
= ∂3F

∂xl∂xk∂xs
ηst ∂3F

∂xt∂xm∂xj
. (3.6)

Thus, the WDVV equation also describes the isoassociative quantum deformations.
One more example of isoassociative quantum deformations is provided by the Riemann

space with the flat Hessian metric
gjk = ∂2	

∂xj ∂xk considered in [26] (see also [27], proposition 5.10). In this case [26]

Cl
jk = h̄�l

jk = h̄glm ∂3	

∂xj∂xk∂xm
, (3.7)

equation (3.2) is satisfied identically and the associativity condition takes the form

∂3	

∂xj∂xk∂xs
gst ∂3	

∂xt∂xm∂xl
= ∂3	

∂xl∂xk∂xs
gst ∂3	

∂xt∂xm∂xj
. (3.8)

This equation represents a rather nontrivial single-field reduction of equation (3.5).

4. Weakly (non)associative quantum deformations

All coisotropic deformations are isoassociative by construction [14]. For their subclass
described by the oriented associativity equation the CS is reduced to the system (3.1), (3.2).
But, there is another subclass of coisotorpic deformations for which the exactness conditions
(3.2) are not satisfied. For the finite-dimensional algebras such coisotropic deformations are
described by the stationary dispersionless KP equation and other hydrodynamical-type systems
[14] . In the infinite-dimensional case this type of deformations is described by the universal
Whitham hierarchy of zero genus and, in particular, by the dispersionless KP hierarchy [12].

What is the quantum version of coisotropic deformations of such a type? One naturally
expects that they will not be the isoassociative one. On the other hand, quantum deformations,
for which equations (3.2) are not satisfied, are governed by equation (2.13) with a nice
geometrical meaning even if they are not isoassociative.

All these suggest that the general quantum deformations defined by QCS (2.13) without
the additional exactness constraint (3.2) should be of interest too. We will refer to such
deformations as weakly associative or weakly nonassociative quantum deformations.

The first term is due to the fact that according to (2.10) and (2.12) for such deformations
one has associativity for all values of quantum deformation parameters not on the operator
level, i.e. not on the whole space H, but only on the smaller ‘physical’ subspace H� . The
second name reflects the fact that the defect of associativity

αn
klj � Cm

jkC
n
lm − Cm

klC
n
jm (4.1)

for such deformations is given by

αn
klj = −h̄

(
∂Cn

jk

∂xl
− ∂Cn

kl

∂xj

)
. (4.2)

So, for small h̄ or slowly varying structure constants the defect of associativity is small.
For the matrix-valued two-form αq with the matrix elements (αq)

n
k � 1

2αn
klj dxl ∧ dxj one

has

αq = −h̄d�, (4.3)

where � is defined in (2.18). One may refer to αq also as a quantum anomaly of associativity.
Note that for an algebra with unity element all elements αn

klj with k or l or j = 0 vanish.

9
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Geometrical interpretation of the QCS (2.13) provides us with numerous examples of
weakly (non)associative quantum deformations. Any torsionless flat connection gives us
such deformation for certain associative algebra. In the generic case, for instance, these
deformations are given by formulae (2.22) and (2.23) for the semisimple and nilpotent algebras,
respectively.

If there exists a metric gjk compatible with the Christoffel symbols �l
jk = h̄Cl

jk then the
generic deformation of the structure constants is described by the formula

Cl
jk = 1

2
h̄gnl

(
∂gnk

∂xj
+

∂gjn

∂xk
− ∂gjk

∂xn

)
, (4.4)

where gjk is an arbitrary flat metric. Particular choice of the metric gives us a specific
deformation. For instance, for the diagonal flat metric gjk = δjkH

2
j the weakly (non)

associative deformations are defined by the solutions of the well-known Lame system which
describes the orthogonal systems of coordinates in the N-dimensional Euclidean space (see
e.g. [16]). For certain metrics, as, for example, for the Hessian metric considered at the end
of the previous section, the quantum anomaly vanishes.

Other examples are provided by interpretation of the system (2.24) as the system of
equations for the position vector in the affine differential geometry (see e.g. [28]). We note
also the papers [29, 30] in which the equations describing the geometry of submanifolds for a
flat space have been reduced to the WDVV-type equations.

Different types of (non)associative deformations is given by the quantum version of the
coisotropic deformations of the finite-dimensional algebras studied in [14]. As an illustrative
example we will consider here the three-dimensional (N = 3) algebra with the unity element.
The nontrivial part of the table of multiplication is of the form

P2
1 = AP0 + BP1 + CP2,

P1P2 = DP0 + EP1 + GP2, (4.5)

P2
2 = LP0 + MP1 + NP2.

As in paper [14] we consider the ‘gauge’ B = 0, C = 1,G = 0. The QCS system (2.13)
in this case assumes the form

A + N − E = 0,

h̄Ax2 − h̄Dx1 + L − EA = 0,

−h̄Ex1 + M − D = 0, (4.6)

h̄Dx2 − h̄Lx1 + ED − MA − ND = 0,

h̄Ex2 − h̄Mx1 + E2 − L − NE = 0,

−h̄Nx1 + D − M = 0,

where Axj
� ∂A

∂xj etc. This system of equations implies that

E = 1

2
A +

3

4
ε, N = −1

2
A +

3

4
ε,

L = 1

2
A2 +

3

4
εA − h̄Ax2 + h̄Dx1 , (4.7)

M = D +
h̄

2
Ax1

and

Ax2 − 4

3
Dx1 + εx2 − h̄

3
Ax1x1 = 0,

(4.8)
Dx2 − 3

4
(A2)x1 − 3

4
εAx1 + h̄Ax1x2 − h̄Dx1x1 = 0,

10
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where ε(x2) is an arbitrary function. Eliminating D from system (4.8) ,one obtains the equation

Ax2x2 − εAx1x1 − (A2)x1x1 +
h̄2

3
Ax1x1x1x1 + εx2x2 = 0. (4.9)

At ε = const it is the well-known Boussinesq equation which describes surface waves
(see e.g. [31]). This equation is integrable by the inverse scattering transform method [32]
similar to the famous Korteweg-de Vries and KP equations (see e.g. [33–35]).

Equations (4.8) imply the existence of the function F such that

A = −ε − 2Fx1x1 , D = −3

2
Fx1x2 +

h̄

2
Fx1x1x1 . (4.10)

In terms of function F, system (4.8) or equation (4.9) becomes

Fx2x2 − εFx1x1 +
1

2

(
ε + 2Fx1x1

)2
+

h̄2

3
Fx1x1x1x1 = 0. (4.11)

The function τ defined by F = log τ is the τ - function for the Boussinesq equation (4.9)
and equation (4.11) is the Hirota equation to it (at ε = 0 see e.g. [36]).

Any solution of the Boussinesq equation (4.9) or the Hirota equation (4.11) provides us
with the weakly (non)associative quantum deformation of the algebra (4.5) with the structure
constants given by formulae (4.7), (4.10). The quantum anomaly αq (4.3) for these Boussinesq
deformations is of the form

αq = h̄

⎛⎜⎝0 1
2Ax2 + h̄

2Ax1x1
1
2 (A2)x1

0 −Ax1 − 1
2Ax2 − h̄

2Ax1x1

0 0 Ax1

⎞⎟⎠ dx1 ∧ dx2. (4.12)

To present a simple concrete example of deformation for the algebra (4.5) we consider
the following polynomial solution

F = α(x1)2 + βx1x2 + (αε − 4α2)(x2)2 + γ (x1)2x2 + 1
3γ (ε − 8α)(x2)3 − 2

3γ 2(x2)4 (4.13)

of the Hirota equation (4.11) with ε=const where α, β, γ are arbitrary constants. This solution
defines via (4.7) and (4.10) the following weakly (non)associative deformation of the structure
constants:

A = −4α − 4γ x2, B = 0, C = 1,

D = − 3
2β − 3γ x1, E = −2α − 2γ x2 + 3

4ε, G = 0,
(4.14)

L = 8(α + γ x2)2 − 3ε(α + γ x2) + h̄γ, M = − 3
2β − 3γ x1,

N = 2α + 2γ x2 + 3
4ε.

For this deformation the quantum anomaly is given by

αq = 2h̄γ

⎛⎝0 −1 0
0 0 1
0 0 0

⎞⎠ dx1 ∧ dx2. (4.15)

General formulae (2.5) and (2.24) provide us with the auxiliary linear problems for
the Boussinesq equation. It is easy to show that equations (2.5) for the algebra (4.5) with
B = G = 0, C = 1 are equivalent to the following two equations(

p3
1 −

(
3

2
A +

3

4
ε

)
p1 − (

D + h̄Ax1

)
p0

)
|�〉 = 0, (4.16)(

p2 − p2
1 + Ap0

) |�〉 = 0. (4.17)

11



J. Phys. A: Math. Theor. 42 (2009) 095201 B G Konopelchenko

In the coordinate representation these equations look like

h̄3�x1x1x1 +
3

2
h̄

(
u − ε

2

)
�x1 + w� = 0, (4.18)

h̄�x2 − h̄2�x1x1 − u� = 0, (4.19)

where u = −A and w = −D − h̄Ax1 . Equations (4.18)–(4.19) are the well-known auxiliary
linear problems for the Boussinesq equation at zero value of the spectral parameter [32–34].

Another set of linear problems can be obtained from conditions (2.20). For the Boussinesq
algebra (4.5) the matrices C1 and C2 are

C1 =

⎛⎜⎝0 A D

1 0 1
2A + 3

4ε

0 1 0

⎞⎟⎠ , (4.20)

C2 =

⎛⎜⎝0 D 1
2A2 − h̄Ax2 + h̄Dx1 + 3

4εA

0 1
2A + 3

4ε D + h̄
2Ax1

1 0 − 1
2A + 3

4ε

⎞⎟⎠ . (4.21)

The commutativity condition (2.20) for the connection ∇j = h̄ ∂
∂xj + Cj , J = 1, 2

represents the compatibility condition for the linear problems(
h̄

∂

∂x1
+ C1

)
ϕ = 0,

(
h̄

∂

∂x2
+ C2

)
ϕ = 0, (4.22)

where ϕ is the column ϕ = (ϕ1,ϕ2, ϕ3)
T . Equations (2.20) for C1 and C2 given by (4.20)

and (4.21) are equivalent to equations (4.7), (4.8), i.e. to the Boussinesq equation. So,
equations (4.22) represent the auxiliary matrix linear problems for the Boussinesq equation.
Equations (4.22) imply the scalar equations

h̄3ϕ3,x1x1x1 − h̄

(
3

2
A +

3

4
ε

)
ϕ3,x1 +

(
D +

h̄

2
Ax1

)
ϕ3 = 0,

(4.23)
h̄ϕ3,x2 + h̄2ϕ3,x1x1 − Aϕ3 = 0.

Equations (4.23) are formally adjoint to equations (4.18)–(4.19) and their compatibility
condition gives rise to the same Boussinesq equation (4.9).

We would like to note that the ‘zero curvature’ representation
[

∂
∂x1 + U, ∂

∂x2 + V
] = 0 with

the matrix-valued functions U and V is quite common in the theory of the (1+1)-dimensional
integrable systems (see e.g. [33–35]). The particular representation of the form (4.22) is of
interest at least by two reasons. First, for instance, for the Boussinesq equation the elements
of the matrices C1 and C2 (4.20), (4.21) really coincide with the components of the Christoffel
symbol. Second, in such a representation the elements of C1 and C2 are nothing but the
structure constants of the deformed associative algebra (4.5).

All the above formulae for the Boussinesq quantum deformations in the formal limit
h̄ → 0 (with � = exp

(
S
h̄

)
) are reduced to those for the coisotropic deformations of the same

algebra (4.5) which are described by the stationary dispersionless KP equation [14].
Finally, we note that eliminating Fx1x1 from the Hirota equation (4.11) with the use of its

differential consequences, one obtains the equation

Fx2x2x2Fx1x1x1 − Fx2x2x1Fx1x1x2 = h̄2

3

(
Fx1x1x2Fx1x1x1x1x1 − Fx1x1x1Fx1x1x1x1x2

)
12
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which represents the ‘quantum’ version of Witten’s equation [3]

Fx2x2x2Fx1x1x1 − Fx2x2x1Fx1x1x2 = 0,

i.e. equation (3.6) for the two-dimensional algebra without unity element and the metric
η = ( 0

1
1
0

)
.

5. Quantum deformations of the infinite-dimensional algebra and KP hierarchy

We will consider an infinite-dimensional algebra of polynomials generated by a single element.
In the so-called Faa’ di Bruno basis the structure constants of this algebra have the form [12]

Cl
jk = δl

j+k + Hk
j−l + H

j

k−l , j, k, l = 0, 1, 2 . . . , (5.1)

where Hk
l = 0 at l � 0 and H 0

l = 0. Coisotropic deformations of the structure constants
(5.1) have been studied in [12]. It was shown that they are described by the dispersionless KP
hierarchy.

Here we will discuss the quantum deformations of the same set (5.1) of the structure
constants.

Proposition 5.1. For the structure constants (5.1) the QCS (2.13) is equivalent to the system

h̄
∂Hk

j

∂xl
+ Hl

j+k + Hk
j+l − Hk+l

j +
j−1∑
n=1

Hk
j−nH

l
n −

l−1∑
n=1

Hk
l−nH

n
j −

k−1∑
n=1

Hl
k−nH

n
j = 0,

j, k, l = 0, 1, 2, . . . . (5.2)

Proof. Substitution of (5.1) into (2.13) gives

h̄
∂Hk

j−m

∂xl
+ h̄

∂H
j

k−m

∂xl
− h̄

∂Hk
l−m

∂xj
− h̄

∂H l
k−m

∂xj

+
∞∑

n=0

(
δn
j+k + Hk

j−n + H
j

k−n

)(
δm
n+l + Hl

n−m + Hn
l−m

)
−

∞∑
n=0

(
δn
l+k + Hk

l−n + Hl
k−n

)(
δm
n+j + H

j
n−m + Hn

j−m

) = 0. (5.3)

At j > m, k < m, l < m using the identity
k−1∑

p=n−1

H
j

k−pHm
p−n =

k−1∑
p=n−1

Hm
k−pH

j
p−n,

one obtains equation (5.2) with the substitution j → j − m. At m > j,m > l and m < k

equation (5.3) is reduced to

∂H
j

k

∂xl
− ∂H l

k

∂xj
= 0. (5.4)

It is easy to see that equation (5.2) directly implies (5.4) due to the symmetry of the
nondifferential part in the indices k and l. An analysis of all other choices of indices in (5.3)
shows that the resulting equations are all equivalent to (5.2). �

Solutions of the QCS (5.2) provide us with the quantum deformation of the polynomial
algebra in the Faa’ di Bruno basis. In general, these deformations are the weakly
(non)associative one and the quantum anomaly is given by

αn
klj = h̄

(
∂Hk

l−n

∂xj
− ∂Hk

j−n

∂xl

)
13
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or

αq = −h̄ dA, (5.5)

where the matrix-valued one -form A has elements (A)nk = ∑∞
l=n+1 Hk

l−n dxl. At h̄ → 0 the
QCS (5.2) converts into the classical associativity condition for the structure constants (5.1)
[12].

We note that for the first time the system (5.2) has been derived in [37] within a different
context as the component-wise version of the central system for the currents associated with
the KP hierarchy. It was shown in [37] that it encodes a complete algebraic information about
the KP hierarchy. We will demonstrate this in a little bit different manner.

Similar to the coisotropic case [12] there are, at least, two ways to decode information
contained in the QCS (5.2). First approach is to choose first an appropriate parametrization
of H

j

k . As in the classical case [12] we introduce the functions u, v and w defined by the
formulae

H 1
1 = − 1

2u, H 1
2 = − 1

3v, H 1
3 = − 1

4w + 1
8u2. (5.6)

From the QCS (5.2) one obtains

H 2
1 = 2H 1

2 + h̄
∂H 1

1

∂x1
,

H 3
1 = 3H 1

3 + h̄
∂

(
H 1

2 + H 2
1

)
∂x1

,

H 2
2 = −h̄

∂H 1
1

∂x2
− H 1

3 + H 3
1 +

(
H 1

1

)2
.

Hence

H 2
1 = −2

3
v − h̄

2
ux1 ,

H 3
1 = −3

4
w +

3

8
u2 − h̄vx1 − h̄2

2
ux1x1, (5.7)

H 2
2 = 1

2
u2 − 1

2
w +

h̄

2
ux2 − h̄vx1 − h̄2

2
ux1x1 .

Substituting these expressions into the first exactness conditions (5.4), i.e.

∂H 1
1

∂x2
− ∂H 2

1

∂x1
= 0,

∂H 1
2

∂x2
− ∂H 2

2

∂x1
= 0,

∂H 1
1

∂x3
− ∂H 3

1

∂x1
= 0 (5.8)

and eliminating w, one obtains the equations

ux3 − h̄2

4
ux1x1x1 − 3

4
(u2)x1 − ϕx2 = 0, ux2 − 4

3
ϕx1 = 0, (5.9)

where ϕ = v + 3
4h̄ux1 . This is the famous Kadomtsev–Petviashvili equation (see e.g. [33–35]).

Using higher equations (5.2) and (5.4), one in a similar manner obtains the higher KP equations
and the whole KP hierarchy.

In the limit h̄ → 0 equation (5.9) is reduced to the dispersionless KP equation while
at the stationary case ux3 = 0 one obtains the Boussinesq equation (4.9) at ε = 0 with
A = −u, ϕ = −D − h̄

4Ax1 .

Another way to deal with the QCS (5.2) is to solve first all exactness conditions. One of
them is given by (5.4). It implies the existence of the functions Fk such that

H
j

k = ∂Fk

∂xj
, j, k = 1, 2, 3 . . . (5.10)

14
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The system (5.2), in addition, contains another exactness-type condition. Indeed, as it was
shown in [37], equations (5.2) lead to the following constraint system

h̄
∂

∂xj

(
n−1∑
k=1

Hk
n−k

)
+ nHj

n = Hj
n +

n−1∑
k=1

(
H

j+n−k

k − Hk
j+n−k

)
+

j−1∑
l=1

n−1∑
k=1

Hn−k
l H

j−l

k . (5.11)

The rhs of (5.11) is symmetric in the indices j and n. Hence

h̄
∂

∂xj

(
n−1∑
k=1

Hk
n−k

)
+ nHj

n = h̄
∂

∂xn

(
j−1∑
k=1

Hk
j−k

)
+ jHn

j . (5.12)

Substitution of (5.10) into equations (5.12) gives the exactness conditions

∂

∂xj

(
nFn + h̄

n−1∑
k=1

∂Fn−k

∂xk

)
= ∂

∂xn

(
jFj + h̄

j−1∑
k=1

∂Fj−k

∂xk

)
, j, n = 1, 2, 3 . . . (5.13)

Proposition 5.2.

H
j

k = 1

h̄
Pk(−h̄̃∂)Fxj

, j, k = 1, 2, 3, . . . (5.14)

where Pk(−h̄̃∂) � Pk

(−h̄ ∂
∂x1 ,− 1

2h̄
∂

∂x2 ,− 1
3h̄

∂
∂x3 , . . .

)
and Pk (t1, t2, t3, . . .) are Schur

polynomials.

Proof. Equations (5.13) imply the existence of a function F such that

jFj + h̄

j−1∑
k=1

∂Fj−k

∂xk
= −Fxj

. (5.15)

Resolving (5.15) recurrently, one obtains

F1 = −Fx1 ,

2F2 = −Fx2 + h̄Fx1x1,

3F3 = −Fx3 + 3
2h̄Fx1x2 − 1

2h̄
2Fx1x1x1

and so on. The compact form of these relations is Fk = 1
h̄
Pk(−h̄̃∂)F where Schur polynomials

are defined, as usual, by the generating formula exp
(∑∞

k=1 λktk
) = ∑∞

k=0 λkPk (t) . Then, in
virtue of (5.10), one has (5.14). �

Substitution of the expressions (5.14) for H
j

k into the QCS (5.2) gives the infinite system
of differential equations, bilinear in F. The simplest of them is

4

3
Fx1x3 − h̄2

3
Fx1x1x1x1 − 2

(
Fx1x1

)2 − Fx2x2 = 0. (5.16)

In terms of the function τ = exp F the above equation and equations (5.2) with

H
j

k = 1

h̄
Pk(−h̄̃∂)

τxj

τ
, j, k = 1, 2, 3, . . . (5.17)

are nothing but the famous bilinear Hirota equations for the KP hierarchy (see e.g. [34–36]).
Hence, the function τ is the celebrated KP τ -function.

Thus, any KP τ -function defines weakly (non)associative quantum deformations of the
structure constants (5.1) for the infinite-dimensional algebra by formula (5.17) and Hirota
bilinear equations. Quantum anomaly for these deformations is given by (5.5) with

(A)nk = 1

h̄

∞∑
l=n+1

Pl−n(−h̄̃∂)
τxk

τ
dxl. (5.18)
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At last, in the limit h̄ → 0 all the above formulae are reduced to those for coisotropic
deformations [12]. We emphasize that quantum and isotropic deformations represent different
deformations of the same structure constants (5.1).

For concrete solutions of the KP hierarchy certain structure constants may remain
undeformed and components of quantum anomaly may vanish. For example, the function
F given by (4.14) with ε = 0 is the solution of equation (5.16) too. For this solution all H

j

k

with j � 3 vanish as well as An
k = 0 for n, k � 3 . One soliton solution of the KP equation

corresponds to τ = 1 + exp[k(x1 + px2 + qx3)] where q = h̄2

4 k2 + 3
4p2 and k,p are arbitrary

constants (see e.g. [33–36]). For this soliton deformation H
j

k = 0 at j � 4 and An
k = 0 for

k, n � 4.
A quasi-triangular structure of the constants (5.1) allows us to rewrite equations (2.5) in

the equivalent form(
pn − pn

1 −
n−2∑
m=1

unm (x) pm
1 − un0p0

)
|�〉 = 0, n = 1, 2, 3, . . . (5.19)

where the coefficients unm are the certain functions of H
j

k . For example, u20 = −2H 1
1 , u31 =

−3H 1
1 , u30 = H 1

2 + H 2
1 + 2 ∂H 1

1
∂x1 .

In the coordinate representation equations (2.24) due to (2.25) take the form

−h̄2 ∂2�̃

∂xj ∂xk
+ h̄

∂�̃

∂xj+k
+ h̄

j−1∑
l=1

Hk
j−l

∂�̃

∂xl
+ h̄

k−1∑
l=1

H
j

k−l

∂�̃

∂xl
+

(
H

j

k + Hk
j

)
�̃ = 0,

(5.20)
j, k = 1, 2, 3, . . .

The system of linear equations (5.20) is equivalent to the standard set of auxiliary linear
problems for the KP hierarchy

h̄
∂�̃

∂xn
= h̄n ∂n�̃

(∂x1)n
+

n−2∑
m=0

h̄munm(x)
∂m�̃

(∂x1)m
(5.21)

that is the coordinate representation of equations (5.19).
To get a standard form of the above formulae with a spectral parameter z one considers a

formal Laurent series H(j) (x, z) �
∑∞

1 z−kH
j

k . In virtue of (5.15) one has

H(j) = 1

h̄

∂

∂xj

{(
exp

(
−h̄

∞∑
n=1

z−n

n

∂

∂xn

)
− 1

)
F

}
= 1

h̄

∂

∂xj
log

(
τ

(
x − [z−1]

)
τ (x)

)
, (5.22)

where x − [z−1] �
(
x1 − 1

z
, x2 − 1

2z2 , x
3 − 1

3z3 , . . .
)

is the Miwa shift [36]. Introducing the

wavefunction χ by H(j) � 1
h̄

∂ log χ

∂xj , one obtains

χ(x, z) = τ(x − [z−1])

τ (x)
(5.23)

that reproduces the standard form of the dressed KP wavefunction

�̃(x, z) = exp

( ∞∑
n=1

znxn

)
χ (x, z) = exp

( ∞∑
n=1

znxn

)
τ(x − [z−1])

τ (x)
(5.24)

in terms of the τ -function [36]. For more details see [37].
It is well known that the stationary reductions of the KP hierarchy give rise to the

Gelfand–Dickey hierarchies (see e.g. [33–35]). At the same time one can show that the

stationarity constraint ∂H
j

k

∂xN = 0 converts the infinite-dimensional polynomial algebra into
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the finite-dimensional one. So, stationary solutions of the KP hierarchy provide us with
the weakly (non)associative quantum deformations of the finite-dimensional algebras. The
Boussinesq deformation (4.8)–(4.12) is the simplest example. For the general Gelfand–Dickey
case see also [18].

Finally, we would like to note that the quantum deformations of algebras obtained by the
process of gluening [12] of N algebras of the type (5.1) are described by the N-component KP
hierarchy.

At last, in the limit h̄ → 0 all the above formulae are reduced to those for coisotropic
deformations [12]. We emphasize that quantum and isotropic deformations represent different
deformations of the same structure constants (5.1).

6. Conclusion

The approach presented in the paper can be extended in different directions. For instance, the
basic idea of identification of the elements Pj of the basis and deformations parameters xj

with the elements of the Heisenberg algebra can be applied to other types of algebras.
We note also that formula (2.10) gives a simple realization for the previously discussed

idea of geometrical interpretation of the associator for an algebra as a curvature tensor (see
e.g. [38]). It suggests a natural generalization of quantum deformations to nonassociative
algebras.
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